Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Arch Virol ; 168(4): 119, 2023 Mar 23.
Article in English | MEDLINE | ID: covidwho-2288187

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a lethal disease caused by the coronavirus SARS-CoV-2, which can result in a broad clinical spectrum of respiratory symptoms. While many clinical risk factors such as concomitant chronic diseases play roles in the pathophysiology of COVID-19, genetic predisposition factors have not been widely studied. The aim of this study was, therefore, to evaluate the relationship between some singlenucleotide polymorphisms (SNPs) of the human genes TYK2 and ACE2 and the severity of SARS-CoV-2 infection. Genomic DNA was isolated from 200 SARS-CoV-2-infected individuals with severe (n = 100) or mild (n = 100) disease. Owing to the importance of ACE2 and TYK2 genes in regulating the immune response to SARS-CoV-2 infection, TYK2 gene SNPs, i.e. rs2304255, rs2304256, rs12720270, and rs12720354 and ACE2 rs382746 variants, were genotyped in the samples. To confirm the results, the expression of different TYK2 genotypes was investigated using real-time PCR. The presence of the nucleotide T at the locus rs2304255 was shown to be a risk factor linked to disease severity (OR [95% CI] = 3.2485 [2.1554-4.8961]). Similarly, the presence of A at the locus rs12720354 increased the risk of severity (OR [95% CI]) = 3.9721 [2.6075-6.0509]). In contrast, the presence of A at the loci rs2304256 and rs12720270 was observed to reduce the severity risk (OR [95% CI] = 0.2495 [0.1642-0.3793] and 0.1668 [0.1083-0.2569], respectively). Real-time PCR results also demonstrated that the expression level of TYK2 in samples with the TT genotype of rs2304255 and the AA genotype of rs12720354 and in samples with the GG genotype of rs12720207 was significantly lower than in those with other genotypes. The results of this study suggest that TYK2 SNPs might be utilized to identify individuals who are at risk for severe COVID-19, in order to better manage their health care. It is predicted that the presence of some alleles (T in rs2304255, A in rs12720354, and G in rs12720207) of TYK2 can affect COVID-19 severity by reducing TYK2 expression and thereby affecting the regulatory role of TYK2 in the immune response.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , TYK2 Kinase/genetics , TYK2 Kinase/metabolism , COVID-19/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Genotype , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
2.
J Cutan Med Surg ; 27(1_suppl): 3S-24S, 2023.
Article in English | MEDLINE | ID: covidwho-2269611

ABSTRACT

Cytokines in the interleukin (IL)-23/IL-17 axis are central to psoriasis pathogenesis. Janus kinase (JAK) signal transducer and activator of transcription (STAT) regulates intracellular signalling of several cytokines (including IL-12, 23, 22, 6, 17, and interferon (IFN)-γ) in the IL-23/IL-17 axis, and, as a result, has become a therapeutic target for psoriasis treatment. Although several JAK1-3 inhibitors, with varying degrees of selectivity, have been developed for immune-mediated inflammatory diseases, use in psoriasis is limited by a low therapeutic index as anticipated by signals from other disease indications. More selective inhibition of the JAK family is an area of interest. Specifically, selective tyrosine kinase (TYK)2 inhibition suppresses IL-23/IL-17 axis signalling, and at therapeutic doses, has a favorable safety profile compared to therapeutic doses of JAK1-3 inhibitors. Phase III efficacy and safety data for the selective allosteric TYK2-inhibitor, deucravacitinib, in adult patients with moderate-to-severe plaque psoriasis is promising. Furthermore, phase II clinical trials for ropsacitinib (PF-06826647), a selective TYK2 inhibitor, and brepocitinib (PF-06700841), a JAK1/TYK2 inhibitor, have also demonstrated efficacy and an acceptable safety profile in adult patients with moderate-to-severe plaque psoriasis. Other novel TYK2 allosteric inhibitors, NDI-034858 and ESK-001, are currently being investigated in adult patients with plaque psoriasis. This article reviews the details of the JAK-STAT pathway in psoriasis pathophysiology, the rationale for selective targeting of JAKs in the treatment of psoriasis, and provides clinical perspective on clinical trial data for JAK and TYK2 inhibitors.


Subject(s)
Janus Kinase Inhibitors , Psoriasis , Adult , Humans , Janus Kinases/metabolism , Janus Kinases/therapeutic use , Interleukin-17/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , STAT Transcription Factors/therapeutic use , TYK2 Kinase/metabolism , TYK2 Kinase/therapeutic use , Psoriasis/pathology , Interleukin-23 , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use
3.
Cells ; 11(9)2022 04 20.
Article in English | MEDLINE | ID: covidwho-1792800

ABSTRACT

Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signaling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1ß (IL-1ß) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1ß in THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB), and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signaling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo.


Subject(s)
COVID-19 , Cannabidiol , Cannabinoids , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Cytokine Release Syndrome , Cytokines/metabolism , Dronabinol/pharmacology , Humans , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/metabolism , TYK2 Kinase/pharmacology
4.
Cytokine ; 153: 155849, 2022 05.
Article in English | MEDLINE | ID: covidwho-1783275

ABSTRACT

As a member of JAK family of non-receptor tyrosine kinases, TYK2 has a crucial role in regulation of immune responses. This protein has a crucial role in constant expression of IFNAR1 on surface of cells and initiation of type I IFN signaling. In the current study, we measured expression of IFNAR1 and TYK2 levels in venous blood samples of COVID-19 patients and matched controls. TYK2 was significantly down-regulated in male patients compared with male controls (RME = 0.34, P value = 0.03). Though, levels of TYK2 were not different between female cases and female controls, or between ICU-admitted and non-ICU-admitted cases. Expression of IFNAR1 was not different either between COVID-19 cases and controls or between patients required ICU admission and non-ICU-admitted cases. However, none of these transcripts can properly diffrentiate COVID-19 cases from controls or separate patients based on disease severity. The current study proposes down-regulation of TYK2 as a molecular mechanism for incapacity of SARS-CoV-2 in induction of a competent IFN response.


Subject(s)
COVID-19 , Female , Humans , Male , Proteins/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , SARS-CoV-2 , TYK2 Kinase/genetics , TYK2 Kinase/metabolism
5.
J Virol ; 95(19): e0086221, 2021 09 09.
Article in English | MEDLINE | ID: covidwho-1309804

ABSTRACT

SARS-CoV-2 can infect multiple organs, including lung, intestine, kidney, heart, liver, and brain. The molecular details of how the virus navigates through diverse cellular environments and establishes replication are poorly defined. Here, we generated a panel of phenotypically diverse, SARS-CoV-2-infectible human cell lines representing different body organs and performed longitudinal survey of cellular proteins and pathways broadly affected by the virus. This revealed universal inhibition of interferon signaling across cell types following SARS-CoV-2 infection. We performed systematic analyses of the JAK-STAT pathway in a broad range of cellular systems, including immortalized cells and primary-like cardiomyocytes, and found that SARS-CoV-2 targeted the proximal pathway components, including Janus kinase 1 (JAK1), tyrosine kinase 2 (Tyk2), and the interferon receptor subunit 1 (IFNAR1), resulting in cellular desensitization to type I IFN. Detailed mechanistic investigation of IFNAR1 showed that the protein underwent ubiquitination upon SARS-CoV-2 infection. Furthermore, chemical inhibition of JAK kinases enhanced infection of stem cell-derived cultures, indicating that the virus benefits from inhibiting the JAK-STAT pathway. These findings suggest that the suppression of interferon signaling is a mechanism widely used by the virus to evade antiviral innate immunity, and that targeting the viral mediators of immune evasion may help block virus replication in patients with COVID-19. IMPORTANCE SARS-CoV-2 can infect various organs in the human body, but the molecular interface between the virus and these organs remains unexplored. In this study, we generated a panel of highly infectible human cell lines originating from various body organs and employed these cells to identify cellular processes commonly or distinctly disrupted by SARS-CoV-2 in different cell types. One among the universally impaired processes was interferon signaling. Systematic analysis of this pathway in diverse culture systems showed that SARS-CoV-2 targets the proximal JAK-STAT pathway components, destabilizes the type I interferon receptor though ubiquitination, and consequently renders the infected cells resistant to type I interferon. These findings illuminate how SARS-CoV-2 can continue to propagate in different tissues even in the presence of a disseminated innate immune response.


Subject(s)
COVID-19/metabolism , Host Microbial Interactions/physiology , Janus Kinases/metabolism , SARS-CoV-2/metabolism , Cell Line , Gene Expression Regulation , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Janus Kinase 1/metabolism , Myocytes, Cardiac , Receptor, Interferon alpha-beta/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , TYK2 Kinase/metabolism , Virus Replication
6.
J Virol ; 95(13): e0026621, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1263905

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. While previous studies have shown that several SARS-CoV-2 proteins can antagonize the interferon (IFN) response, some of the mechanisms by which they do so are not well understood. In this study, we describe two novel mechanisms by which SARS-CoV-2 blocks the IFN pathway. Type I IFNs and IFN-stimulated genes (ISGs) were poorly induced during SARS-CoV-2 infection, and once infection was established, cells were highly resistant to ectopic induction of IFNs and ISGs. Levels of two key IFN signaling pathway components, Tyk2 and STAT2, were significantly lower in SARS-CoV-2-infected cells. Expression of nonstructural protein 1 (NSP1) or nucleocapsid in the absence of other viral proteins was sufficient to block IFN induction, but only NSP1 was able to inhibit IFN signaling. Mapping studies suggest that NSP1 prevents IFN induction in part by blocking IRF3 phosphorylation. In addition, NSP1-induced depletion of Tyk2 and STAT2 dampened ISG induction. Together, our data provide new insights into how SARS-CoV-2 successfully evades the IFN system to establish infection. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19, a serious disease that can have a myriad of symptoms from loss of taste and smell to pneumonia and hypercoagulation. The rapid spread of SARS-CoV-2 can be attributed in part to asymptomatic transmission, where infected individuals shed large amounts of virus before the onset of disease. This is likely due to the ability of SARS-CoV-2 to effectively suppress the innate immune system, including the IFN response. Indeed, we show that the IFN response is efficiently blocked during SARS-CoV-2 infection, a process that is mediated in large part by nonstructural protein 1 and nucleocapsid. Our study provides new insights on how SARS-CoV-2 evades the IFN response to successfully establish infection. These findings should be considered for the development and administration of therapeutics against SARS-CoV-2.


Subject(s)
Interferon Type I/antagonists & inhibitors , SARS-CoV-2/metabolism , Signal Transduction , Viral Nonstructural Proteins/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/metabolism , HEK293 Cells , Humans , Immunity, Innate , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Phosphoproteins/metabolism , SARS-CoV-2/pathogenicity , STAT2 Transcription Factor/metabolism , TYK2 Kinase/metabolism , Vero Cells
7.
Eur J Immunol ; 51(5): 1071-1075, 2021 05.
Article in English | MEDLINE | ID: covidwho-1118138

ABSTRACT

Cytokine signaling, especially interferon (IFN) signaling is closely linked to several aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. During initial SARS-CoV-2 infection, symptomatic patients present with impaired type I/III IFN-mediated antiviral responses. Interestingly, IFNs regulate the cellular entry receptor for SARS-CoV-2 on epithelial and endothelial cells. As reported recently, critically ill COVID-19 patients show genetic polymorphisms in one IFN receptor gene (IFNRA2) and in a gene locus near the Janus kinase (JAK) TYK2, which is key for IFN, interleukin (IL)-12 and IL-23 signaling, and T helper (Th) 1/Th17 cell-mediated antiviral immune responses. In the advanced stage of the disease, critically ill COVID-19 patients develop a cytokine storm where many inflammatory mediators using the JAK/STAT signaling pathway such as IL-6, IFN-γ, the granulocyte colony-stimulating factor (G-CSF) or IL-2, and chemokines result in an influx of macrophages and neutrophils damaging the lung tissue. The knowledge on the cytokine and JAK/STAT signaling pathways in severe COVID-19 disease explains the promising first results with JAK inhibitors like baricitinib, which not only dampen the inflammation but in the case of baricitinib also affect virus replication and endocytosis in target cells. Here, we summarize the current immunological associations of SARS-CoV-2 infection with cytokine signaling, the JAK/STAT pathway, and the current clinical stage of JAK inhibitors for improving severe COVID-19 disease.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Interferon Type I/immunology , Interferons/immunology , SARS-CoV-2/drug effects , TYK2 Kinase/metabolism , Azetidines/therapeutic use , COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokines/metabolism , Humans , Nitriles , Purines/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines , Receptors, Interferon/genetics , SARS-CoV-2/immunology , Sulfonamides/therapeutic use , TYK2 Kinase/antagonists & inhibitors , TYK2 Kinase/genetics , Virus Replication/drug effects , Interferon Lambda
SELECTION OF CITATIONS
SEARCH DETAIL